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Introduction



Introduction

• Backpropagation through a stochastic node is an important
problem in machine learning.

• Optimization of Eqϕ(z)[f(z)] requires computation of
∇ϕEqϕ(z)[f(z)].

• Objective of stochastic variational inference[3] includes one
such expectation

L(x, θ, ϕ) = Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x)||p(z))
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Previous Methods



Score-function Gradient Estimators

These estimators transform the integral into an expectation using
the “log-trick”.

∇ϕEqϕ(z) [f(z)] = ∇ϕ

∫
f(z)qϕ(z)dz

=

∫
f(z)qϕ(z)∇ϕ log qϕ(z)dz

= Eqϕ(z) [f(z)∇ϕ log qϕ(z)]

Benefits
Works even when f(z) is not differentiable.

Issues
This gradient estimator has high variance. Methods have been
proposed in the literature to control the variance.
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Pathwise Gradient Estimators

Commonly known as the “reparameterization trick”, these estimators
replace probability distributions with a deterministic and
differentiable transformation g(ϕ, ε) of a fixed base distribution.

∇ϕEqϕ(z) [f(z)] = ∇ϕEqϕ(ε) [f(g(ϕ, ε))]

= Eqϕ(ε) [∇zf(g(ϕ, ε))∇ϕg(ϕ, ε)]

Benefits
This method can easily be applied to the local-scale family,
distributions with tractable quantile function, and their derivatives.

Issues
Many standard distributions such as Gamma, Beta, Dirichlet,
Wishart, etc. do not meet the requirements of this trick.
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Recent Advances

Surrogate Distributions
Reparametrizable surrogate distributions such as GumbelSoftmax for
Categorical[2], Kumaraswamy for Beta[5], etc. have been proposed to
approximate the respective distributions.

Generalized Reparameterizations
Methods such as Generalized Reparameterization Gradients (GRG)[6]
and Rejection Sampling Variational Inference (RSVI)[4] have been
proposed that build upon score-function gradients and
reparameterization.
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Implicit Reparameterization
Gradients



Background

Explicit Reparameterization

• Requires a standardization function Sϕ(z) such that
Sϕ(z) = ε ∼ p(ε).

• Requires Sϕ(z) to be invertible.
• z ∼ qϕ(z) ⇔ z = S−1

ϕ (ε) and ε ∼ p(ε)

∇ϕEqϕ(z)[f(z)] = Eq(ε)[∇ϕf(S−1
ϕ (ε))]

= Eq(ε)[∇zf(S−1
ϕ (ε))∇ϕS−1

ϕ (ε)]

Implicit Reparameterization[1]
Eliminates the requirement of invertible Sϕ(z).
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Derivation

∇ϕEqϕ(z)[f(z)] = Eq(ε)[∇zf(S−1
ϕ (ε))∇ϕS−1

ϕ (ε)] (1)

= Eqϕ(z)[∇zf(z)∇ϕz] (2)

dSϕ(z)

dϕ
=

dε

dϕ
= 0 (3)

∂Sϕ(z)

∂z

dz

dϕ
+

∂Sϕ(z)

∂ϕ
= 0 (4)

∇ϕz = −(∇zSϕ(z))
−1∇ϕSϕ(z) (5)

Sϕ(z)

ϕ

z∂Sϕ(z)
∂ϕ

∂Sϕ(z)
∂z

dz
dϕ

Figure 1
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Examples

Normal Distribution

• Sϕ(z) =
z−µ
σ ∼ N (0, I)

• Explicit Reparameterization
S−1
ϕ (ε) = µ+ σε ⇒ dz

dµ
= 1 and dz

dσ
= ε

• Implicit Reparameterization
dz
dµ

= − dSϕ(z)/dµ

dSϕ(z)/dz
= 1 and dz

dσ
= − dSϕ(z)/dσ

dSϕ(z)/dz
= z−µ

σ

Cumulative Distribution Function

• Sϕ(z) = Fϕ(z) ∼ Uniform(0, 1)

• ∇ϕz = −∇ϕFϕ(z)
qϕ(z)
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Experiments



Gradient of Cross-entropy

• Gradient of cross-entropy is required for minimization of
KL-divergence.

• Variance of the gradient was observed for toy Dirichlet and Von
Mises distributions.

(a) Dirichlet (b) Von Mises

Figure 2: Comparison of RSVI and Implicit Gradients
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Latent Dirichlet Allocation

• Variational Inference was performed using a neural network to
model the Dirichlet variational posterior over topics.

• Experiments were performed on 20 Newsgroups and RCV1
datasets.

Figure 3: Text Perplexity

• Implicits gradients performed better or as good as earlier
approaches and also learn sparse topic weights.
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Variational Auto-Encoders

• Non-normal priors and variational posteriors used with VAEs.
• These models performed better than Normal in terms of test
negative log-likelihood.

• Implicit gradients outperform RSVI on VAEs with Von Mises
posterier.

(a) Von Mises, Uniform
Prior

(b) Gradient Variance

Figure 4: VAE with Von Mises Posterier 11



Conclusion



Conclusion

• An unbiased estimator of gradients with respect to parameters
of a probability distribution in a stochastic graph is presented.

• The gradients exhibit low variance and do not require inversion
of standardization function.

• Even distributions without analytic expression of CDFs are
supported by means of automatic differentiation of an efficient
numerical method.

• Solves the problem of gradient estimation for many
distributions such as Gamma, Beta, Dirichlet, etc.
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Questions?
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