publications

(*) denotes equal contribution

For a complete list, please check my Google Scholar.

2026

  1. ICLR
    Understanding transformers for time series: Rank structure, flow-of-ranks, and compressibility
    In The Fourteenth International Conference on Learning Representations, 2026
  2. ICLR
    Understanding the Implicit Biases of Design Choices for Time Series Foundation Models
    In The Fourteenth International Conference on Learning Representations, 2026
  3. ICLR
    Test-Time Efficient Pretrained Model Portfolios for Time Series Forecasting
    Mert KayaalpCaner TurkmenOleksandr Shchur, Pedro Mercado, Abdul Fatir Ansari, Michael Bohlke-Schneider, and Bernie Wang
    In The Fourteenth International Conference on Learning Representations, 2026

2025

  1. ICLR
    Gradient-Free Generation for Hard-Constrained Systems
    In The Thirteenth International Conference on Learning Representations, 2025
  2. AISTATS
    ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables
    Sebastian Pineda Arango, Pedro Mercado, Shubham Kapoor, Abdul Fatir AnsariLorenzo StellaHuibin Shen, Hugo Senetaire, Caner TurkmenOleksandr ShchurDanielle C. Maddix, Michael Bohlke-Schneider, Bernie Wang, and Syama Sundar Rangapuram
    In Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, 2025
  3. ICML
    Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization
    Luca Masserano, Abdul Fatir AnsariBoran HanXiyuan ZhangChristos FaloutsosMichael W. MahoneyAndrew Gordon Wilson, Youngsuk Park, Syama Sundar Rangapuram, Danielle C. Maddix, and Bernie Wang
    In Forty-second International Conference on Machine Learning, 2025
  4. arXiv
    Zero-Shot Time Series Forecasting with Covariates via In-Context Learning
    Andreas Auer, Raghul Parthipan, Pedro Mercado, Abdul Fatir AnsariLorenzo StellaBernie Wang, Michael Bohlke-Schneider, and Syama Sundar Rangapuram
    arXiv preprint arXiv:2506.03128, 2025
  5. arXiv
    Does Multimodality Lead to Better Time Series Forecasting?
    Xiyuan ZhangBoran Han, Haoyang Fang, Abdul Fatir AnsariShuai ZhangDanielle C Maddix, Cuixiong Hu, Andrew Gordon WilsonMichael W MahoneyHao Wang, and  others
    arXiv preprint arXiv:2506.21611, 2025
  6. arXiv
    fev-bench: A realistic benchmark for time series forecasting
    Oleksandr ShchurAbdul Fatir AnsariCaner TurkmenLorenzo Stella, Nick Erickson, Pablo Guerron, Michael Bohlke-Schneider, and Yuyang Wang
    arXiv preprint arXiv:2509.26468, 2025
  7. NeurIPS
    Mitra: Mixed Synthetic Priors for Enhancing Tabular Foundation Models
    Xiyuan ZhangDanielle C. Maddix, Junming Yin, Nick Erickson, Abdul Fatir AnsariBoran HanShuai Zhang, Leman Akoglu, Christos FaloutsosMichael W. Mahoney, Cuixiong Hu, Huzefa Rangwala, George Karypis, and Bernie Wang
    In The Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025
  8. arXiv
    Chronos-2: From univariate to universal forecasting
    Abdul Fatir AnsariOleksandr Shchur, Jaris Küken, Andreas AuerBoran Han, Pedro Mercado, Syama Sundar Rangapuram, Huibin ShenLorenzo StellaXiyuan Zhang, and  others
    arXiv preprint arXiv:2510.15821, 2025
    4.7K Github stars and 15M+ Hugging Face model downloads as of Jan 2026

2024

  1. ECML PKDD
    Generative Modeling with Flow-Guided Density Ratio Learning
    Alvin HengAbdul Fatir Ansari, and Harold Soh
    In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2024
  2. TMLR
    Chronos: Learning the Language of Time Series
    Abdul Fatir AnsariLorenzo StellaCaner TurkmenXiyuan Zhang, Pedro Mercado, Huibin ShenOleksandr Shchur, Syama Syndar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper Zschiegner, Danielle C. MaddixHao WangMichael W. Mahoney, Kari Torkkola, Andrew Gordon Wilson, Michael Bohlke-Schneider, and Bernie Wang
    Transactions on Machine Learning Research, 2024
    4.7K Github stars and 650M+ Hugging Face model downloads as of Jan 2026
  3. arXiv
    Comparing and contrasting deep learning weather prediction backbones on navier-stokes and atmospheric dynamics
    Matthias Karlbauer, Danielle C MaddixAbdul Fatir AnsariBoran Han, Gaurav Gupta, Yuyang WangAndrew Stuart, and Michael W Mahoney
    arXiv preprint arXiv:2407.14129, 2024

2023

  1. ICML Oral
    Neural Continuous-Discrete State Space Models for Irregularly-Sampled Time Series
    Abdul Fatir AnsariAlvin Heng, Andre Lim, and Harold Soh
    In International Conference on Machine Learning, 2023
    Oral Presentation (top 2.4%)
  2. NeurIPS
    Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting
    Marcel Kollovieh*Abdul Fatir Ansari*, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang, and Yuyang Wang
    In Neural Information Processing Systems, 2023

2022

  1. PhD Thesis
    Deep Generative Modeling for Images and Time Series
    Abdul Fatir Ansari
    National University of Singapore, 2022
    Dean’s Graduate Research Excellence Award

2021

  1. ICLR
    Refining Deep Generative Models via Discriminator Gradient Flow
    Abdul Fatir AnsariMing Liang Ang, and Harold Soh
    In International Conference on Learning Representations, 2021
  2. NeurIPS
    Deep Explicit Duration Switching Models for Time Series
    Abdul Fatir Ansari*, Konstantinos Benidis*, Richard Kurle, Caner TurkmenHarold SohAlex SmolaYuyang Wang, and Tim Januschowski
    In Neural Information Processing Systems, 2021

2020

  1. CVPR Oral
    A Characteristic Function Approach to Deep Implicit Generative Modeling
    Abdul Fatir AnsariJonathan Scarlett, and Harold Soh
    IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020
    Oral Presentation (top 5%)

2019

  1. AAAI Spotlight
    Hyperprior induced unsupervised disentanglement of latent representations
    Abdul Fatir Ansari, and Harold Soh
    In Proceedings of the AAAI Conference on Artificial Intelligence, 2019